Calculus Review #7

1.	Find the area enclosed by the curves $y = \frac{4}{x^2 + 4}$, the <i>x</i> -axis, and the vertical lines										
	x = -2 and $x = 2$.										
	a) $\frac{\pi}{4}$	b) $\frac{\pi}{2}$	c) 2π	d) π	e) none of th	nese					
2.	Find the area enclosed by the curves of $y = \frac{2}{x}$ and $x + y = 3$.										
	a) $\frac{1}{2} - 2\ln(2)$	b) $\frac{3}{2}$	c) $\frac{1}{2}$	$-\ln(4)$	d) $\frac{5}{2}$	e) $\frac{3}{2} - \ln(4)$					
3.	The area enclosed by the ellipse with parametric equations $x = 2\cos\theta$ and $y = 3\sin\theta$ equals										
	a) 6π	b) $\frac{9}{2}\pi$	c) 3π	d) $\frac{3}{2}\pi$	e) none of th	nese					
4.	The area enclosed by one loop of the cycloid with parametric equations $x = \theta - \sin \theta$ and $y = 1 - \cos \theta$ equals										
	a) $\frac{3\pi}{2}$	b) 3π	c) 2π	d) 6π	e) none of th	iese					

5. Suppose the following is a table of values for y = f(x), given that f is continuous on [1,5]:

Х	1	2	3	4	5
у	1.62	4.15	7.50	9.00	12.13

If a trapezoidal sum is used, with n = 4, then the area under the curve from x = 1 to x = 5 is equal, to two decimal places, to....

- a) 6.88 b) 13.76 c) 20.30 d) 25.73 e) 27.53
- 6. The area A enclosed by the four-leaved rose $r = cos(2\theta)$ equals, to three decimal places,
 - a) 0.785 b) 1.571 c) 2.071 d) 3.142 e) 6.283

7. The integral set-up for the volume formed when the region enclosed by the curves $y = x^2$ and y = 4 is revolved about the line y = -1 would be:

a)
$$4\pi \int_{-1}^{4} (y+1)\sqrt{y} dy$$
 b) $2\pi \int_{0}^{2} (4-x^{2})^{2} dx$ c) $\pi \int_{-2}^{2} (16-x^{4}) dx$ d) $2\pi \int_{0}^{2} (24-2x^{2}-x^{4}) dx$

e) none of these

8. Find the volume of the solid formed by revolving an arch of y = sin(x) and the *x*-axis about the *x*-axis:

a)
$$\frac{\pi}{2} \left(\pi - \frac{1}{2} \right)$$
 b) $\frac{\pi^2}{2}$ c) $\frac{\pi^2}{4}$ d) π^2 e) $\pi(\pi - 1)$

9. Find the volume of the solid formed by revolving the curves with parametric equations $x = tan(\theta)$, $y = cos^2(\theta)$, and the lines x = 0, x = 1, and y = 0 about the

x-axis.

a)
$$\pi \int_{0}^{\pi/4} \cos^{4}(\theta) d\theta$$

b) $\pi \int_{0}^{\pi/4} \cos^{2}(\theta) \sin(\theta) d\theta$
c) $\pi \int_{0}^{\pi/4} \cos^{2}(\theta) d\theta$
d) $\pi \int_{0}^{1} \cos^{2}(\theta) d\theta$
e) $\pi \int_{0}^{1} \cos^{4}(\theta) d\theta$

- 10. The base of a solid is the region bounded by the parabola $x^2 = 8y$ and the line y = 4, and each plane section perpendicular to the y-axis is an equilateral triangle. The volume of the solid is
 - a) $\frac{64\sqrt{3}}{3}$ b) $64\sqrt{3}$ c) $32\sqrt{3}$ d) 32 e) none of these
- 11. The length of the arc of the curve $y^2 = x^3$ cut off by the line x = 4 is

a)
$$\frac{4}{3}(10\sqrt{10}-1)$$
 b) $\frac{8}{27}(10^{\frac{3}{2}}-1)$ c) $\frac{16}{27}(10^{\frac{3}{2}}-1)$ d) $\frac{16}{27}(10\sqrt{10})$

e) none of these

12. The length of one arch of the cycloid
$$\begin{cases} x = t - \sin(t) \\ y = 1 - \cos(t) \end{cases}$$
 equals

a)
$$\int_{0}^{\pi} \sqrt{1 - \cos(t)} dt$$
 b) $\int_{0}^{2\pi} \sqrt{\frac{1 - \cos(t)}{2}} dt$ c) $\int_{0}^{\pi} \sqrt{2 - 2\cos(t)} dt$ d) $\int_{0}^{2\pi} \sqrt{2 - 2\cos(t)} dt$
e) $2 \int_{0}^{\pi} \sqrt{\frac{1 - \cos(t)}{2}} dt$

13. Which of the following is an improper integral?

a)
$$\int_{0}^{2} \frac{dx}{\sqrt{x+1}}$$
 b) $\int_{-1}^{1} \frac{dx}{1+x^{2}}$ c) $\int_{0}^{2} \frac{xdx}{1-x^{2}}$ d) $\int_{0}^{\frac{\pi}{2}} \frac{\sin(x)dx}{\cos^{2}(x)}$

e) none of these

14. Find the area in the first quadrant under the curve of $y = e^{-x}$.

a) 1 b) e c) 1/e d) 2 e) none of these

15. Find the area between the curve $y = \frac{4}{\sqrt{1 - x^2}}$ and its asymptotes.

- a) $\frac{\pi}{2}$ b) π c) 2π d) 4π e) none of these
- 16. Find the volume of the solid formed by $y = \frac{1}{x}$, at the left by x = 1, and below by y = 0, revolved about the x-axis.
 - a) $\frac{\pi}{2}$ b) π c) 2π d) 4π e) none of these
- 17. $\int_{1}^{2} \frac{dt}{\sqrt[3]{t-1}} =$ a) $\frac{2}{3}$ b) $\frac{3}{2}$ c) 3 d) 1 e) none of these