- 1. Find the area enclosed by the parabola $y = x^2 3$ and the line y = 1.
 - a) $\frac{8}{3}$ b) 32 c) $\frac{32}{3}$ d) $\frac{16}{3}$ e) none of these
- 2. Find the area enclosed by the parabola $y^2 = x$ and the line x + y = 2.
 - a) $\frac{5}{2}$ b) $\frac{3}{2}$ c) $\frac{11}{6}$ d) $\frac{9}{2}$ e) $\frac{29}{6}$
- 3. Find the area enclosed by the curve of $y = \frac{2}{x}$ and x + y = 3.
 - a) $\frac{1}{2} 2\ln(2)$ b) $\frac{3}{2}$ c) $\frac{1}{2} \ln(4)$ d) $\frac{5}{2}$ e) $\frac{3}{2} \ln(4)$
- 4. Find the total area bounded by the cubic $x = y^3 y$ and the line x = 3y:
 - a) 4 b) $\frac{16}{3}$ c) 8 d) $\frac{32}{3}$ e) 16
- 5. Suppose the following is a table of values for y = f(x), given that f is continuous on [1,5]:

х	1	2	3	4	5
у	1.62	4.15	7.50	9.00	12.13

If a trapezoidal sum is used, with n = 4, then the area under the curve from x = 1 to x = 5 is equal, to two decimal places, to....

a) 6.88 b) 13.76 c) 20.30 d) 25.73 e) 27.53

6. Find the volume of the solid formed when the first quadrant region bounded by $y = x^2$, the y-axis, and y = 4, are revolved about the y-axis.

a)
$$8\pi$$
 b) 4π c) $\frac{64\pi}{3}$ d) $\frac{32\pi}{3}$ e) $\frac{16\pi}{3}$

7. Find the volume of the solid formed when the region enclosed by the curves $y = x^2$ and y = 4 is revolved about the line y = 4.

a)
$$\frac{256\pi}{15}$$
 b) $\frac{256\pi}{5}$ c) $\frac{512\pi}{5}$ d) $\frac{512\pi}{15}$ e) $\frac{64\pi}{3}$

8. The integral set-up for the volume formed when the region enclosed by the curves $y = x^2$ and y = 4 is revolved about the line y = -1 would be:

a)
$$4\pi \int_{-1}^{4} (y+1)\sqrt{y} dy$$
 b) $2\pi \int_{0}^{2} (4-x^2)^2 dx$ c) $\pi \int_{-2}^{2} (16-x^4) dx$ d) $2\pi \int_{0}^{2} (24-2x^2-x^4) dx$

- e) none of these
- 9. The integral set-up for the volume enclosed by the curves $y = 3x x^2$ and y = x about the x-axis would be:

a)
$$\pi \int_{0}^{3/2} [(3x - x^2)^2 - x^2] dx$$
 b) $\pi \int_{0}^{2} (9x^2 - 6x^3) dx$ c) $\pi \int_{0}^{2} [(3x - x^2)^2 - x^2] dx$
d) $\pi \int_{0}^{3} [(3x - x^2)^2 - x^4] dx$ e) $\pi \int_{0}^{3} (2x - x^2)^2 dx$

10. The integral set-up for the volume enclosed by the curves $y = \ln(x)$, y = 0, and x = e about the line x = e would be:

a)
$$\pi \int_{1}^{e} (e - x) \ln(x) dx$$

b) $\pi \int_{0}^{1} (e - e^{y})^{2} dy$
c) $2\pi \int_{1}^{e} (e - \ln(x)) dx$
d) $\pi \int_{0}^{e} (e^{2} - 2e^{y+1} + e^{2y}) dy$ e) none of these

11. The base of a solid is a circle of radius *a*, and every plane section perpendicular to a diameter is a square. The solid has volume

a)
$$\frac{8}{3}a^3$$
 b) $2\pi a^3$ c) $4\pi a^3$ d) $\frac{16}{3}a^3$ e) $\frac{8\pi}{3}a^3$

12. If the curves of f(x) and g(x) intersect for x = a and x = b and if f(x) > g(x) > 0 for all x on (a,b), then the volume obtained when the region bounded by the curves is rotated about the *x*-axis is equal to

a)
$$\pi \int_{a}^{b} f^{2}(x) dx - \int_{a}^{b} g^{2}(x) dx$$
 b) $\pi \int_{a}^{b} [f(x) - g(x)]^{2} dx$ c) $2\pi \int_{a}^{b} x[f(x) - g(x)] dx$
d) $\pi \int_{a}^{b} [f^{2}(x) - g^{2}(x)] dx$ e) none of these

13. Find the area enclosed by the curve of $y = \frac{4}{x^2 + 4}$, the x-axis, and the vertical lines x = -2 and x = 2.

a)
$$\frac{\pi}{4}$$
 b) $\frac{\pi}{2}$ c) 2π d) π e) none of these

14. Find the area enclosed by the curve $y = x^3 - 2x^2 - 3x$ and the x-axis.

a)
$$\frac{28}{3}$$
 b) $\frac{79}{6}$ c) $\frac{45}{4}$ d) $\frac{71}{6}$ e) none of these

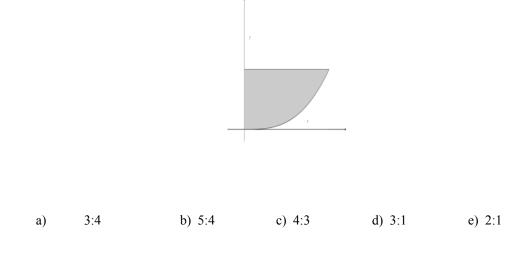
15. The area bounded by the parabola $y = 2 - x^2$ and the line y = x - 4 is given by

a)
$$\int_{-2}^{3} (6 - x - x^2) dx$$

b) $\int_{-2}^{1} (2 + x + x^2) dx$
c) $\int_{-3}^{2} (6 - x - x^2) dx$
d) $2 \int_{0}^{\sqrt{2}} (2 - x^2) dx + \int_{-3}^{2} (4 - x) dx$
e) none of these

16. The volume of the solid formed when the region bounded by the curve $y = x^2$ and the line y = 4 is revolved around the x-axis would be:

a)
$$\frac{64\pi}{5}$$
 b) $\frac{512\pi}{15}$ c) $\frac{256\pi}{5}$ d) $\frac{128\pi}{5}$ e) none of these


17. The volume of the solid formed when the region bounded by the curve $y = 3x - x^2$ and the line y = 0 is revolved around the x-axis would be:

a)
$$\pi \int_{0}^{3} (9x^{2} + x^{4}) dx$$

b) $\pi \int_{0}^{3} (3x - x^{2})^{2} dx$
c) $\pi \int_{0}^{\sqrt{3}} (3x - x^{2}) dx$
d) $2\pi \int_{0}^{3} y \sqrt{9 - 4y} dy$
e) $\pi \int_{0}^{9/4} y^{2} dy$

18. The base of a solid is the region bounded by the parabola $x^2 = 8y$ and the line y = 4, and each plane section perpendicular to the y-axis is an equilateral triangle. The volume of the solid is

a)
$$\frac{64\sqrt{3}}{3}$$
 b) $64\sqrt{3}$ c) $32\sqrt{3}$ d) 32 e) none of these

19. The figure below shows part of the curve of and a rectangle with two vertices at (0,0) and (c,0). What is the ratio of the area of the rectangle to the shaded part of it above the cubic?

